SIMPATO – the Safety Impact Assessment Tool of Interactive

Martijn van Noort (TNO)
Taoufik Bakri (TNO)
Felix Fahrenkrog (IKA)
Jan Dobberstein (BASt)
interactIVe - Project overview

The interactIVe vision:
Accident-free traffic and active safety systems in all vehicles

• Facts:
 • Duration: 48 months (January 2010 – November 2013)
 • 29 partners of 10 countries
 • Budget: 30 Million € (Founding by the European Commission: 17 Million €)

• interactIVe systems:
 • SECONDS (Safety enhancement through continuous driver support)
 • INCA (Integrated collision avoidance and vehicle path control)
 • EMIC (Cost-efficient emergency intervention for collision mitigation)
interactIVe Demonstrators

SECONDS
- Continuous Support
- Curve Speed Control
- Enhanced Dynamic Pass Predictor
- Safe Cruise

INCA
- Lane Change Collis. Avoid.
- Oncoming Vehicle Collis. Avoidance/Mitigation
- Rear End Collis. Avoidance
- Side Impact Avoidance
- Run-off Road Prevention

EMIC
- Emergency Steer Assist
- Collision Mitigation
Safety impact assessment

• What would be the effect of these functions on the number of fatalities and injuries if they were deployed in Europe?

• Characteristics
 • Prototype systems → Limited amount of test results available on technical performance and user behaviour → ex ante evaluation
 • Many different functions, combinations of functions, and demonstrators → evaluation of the functions
 • Need in-depth accident data to define accident scenarios, but not available on EU level
 • Three of the most relevant accident types are
 • Rear end
 • Road departure
 • Lane change
 → Consider only these
Approach

function description -> target scenarios

- technical assessment
- user-related assessment
- GIDAS accident database

real life effectiveness

usage

reconsider accident with effects of new function

scale up using CARE/national databases

Deployment scenario; penetration rate

Focus of this presentation
Safety Impact Assessment – Methodology

- Literature review on impact assessment methodologies:
 - Safety Mechanisms
 - Accident Reconstruction
 - Neural Network
 - FOT – Approach

- Chose appropriate methodology by considering the available data as well as advantage and disadvantages of the methodologies:
 - Nine Safety Mechanisms

- Direct effects
 1. Direct in-car modification of the driving task, **Only in-car functions**
 2. Direct influence by roadside applications,
 3. Indirect modification of user behaviour,
 4. Indirect modification of non-user behaviour,
 5. Modification of interaction between users and non-users,

- Indirect effects on user
 6. Indirect modification of user behaviour,
 7. Modification of modal choice,
 8. Modification of route choice,

- Exposure effects

- Effects on post-accident consequence modification
 - Exposure effects, typically small
 - Only post-collision
Direct effect – Accident evolution

- Function may warn or intervene; driver may react to warning
 - Warning and intervention time points: technical assessment
 - Driver reaction time and reaction strength: user related assessment & literature review
 - Function intervention strength: technical assessment
Direct effects - Possible effects of an interactive ADAS

- How can an interactive function affect an accident?
- Example for rear end:

Focus of this presentation
Direct effects – Rear-end scenario (Braking)

- Initial condition (in-depth accident database)
Direct effects – Rear-end scenario (Evade)

- Initial condition (in-depth accident database)
Accident reconstruction for rear end

- Example rear end accident scenario
- With RECA function

Longitudinal motion

Trajectories in X direction accident id 81 system RECA

Lateral motion

Trajectories in Y direction accident id 81 system RECA

Evasion
364 in-depth accident cases analysed
• Relevant for 4 functions
• Varying results: 21%-77% rear ends potentially avoided, others mitigated
• This holds for selection of GIDAS scenarios → need to be scaled up
Road departure

- Only avoidance
- Only steering
- Similar for curved roads

Reference

Equipped case
150 in-depth accident cases analysed, relevant for 2 functions

Departure (over lane marking): 3-94% potentially avoided

Departure 50 cm outside lane marking: 25-100%

More effective on straight roads than curved, due to timeliness of warning and intervention time points
Conclusions

- interactIVe safety functions have significant potential to improve safety by avoiding or mitigating accidents
- Results are widely varying between functions. For the GIDAS data:
 - 21%-77% rear ends potentially avoided, many others mitigated
 - 3%-94% road departures potentially avoided
- This will be scaled up to EU level

- Accident reconstruction method is suitable for ex ante study. Limitations:
 - Accident evolution is first approximation: fits with available data, no consideration of impact zones, body mechanics, etc.
 - Modelling of realistic driver reactions needs more data: attention, workload, risk compensation, …
 - GIDAS accident scenarios are for Germany
 - Nr of fatal accidents in GIDAS is low, especially for rear end
- Thus, method provides safety potential rather than “real” safety impact.
Thank you.

Martijn van Noort (TNO)
Taoufik Bakri (TNO)
Felix Fahrenkrog (IKA)
Jan Dobberstein (BASt)
Backup slides
SP7 “Evaluation and legal aspects” - Overview

SP7 role in interactIVe:

- Definition of a test and evaluation framework for each application with respect to human factors and technical performance
- Development of test scenarios, procedures, and evaluation methods
- Provision of tools for evaluation like equipment, test catalogues, questionnaires or software and support for testing
- Definition of test and evaluation criteria
- Analysis of legal aspects for broad exploitation of the applications

Evaluation for interactIVe is divided into:

- Technical assessment
- User-related assessment
- Impact assessment

SP Leader:

Technical assessment
User-related assessment
Impact assessment
Legal aspects
SP7 “Evaluation and legal aspects” - Methodology

Methodology for the evaluation bases mainly on the PReVAL methodology:

- Step 0: System and function description
- Step 1: Expected impact and hypotheses
- Step 2: Test scenario definition
- Step 3: Evaluation method selection
- Step 4: Measurement plan
- Step 5: Test execution and analysis

Assessment of the whole functions (not components)
Safety Impact Assessment – Approach

Deployment scenario
- Penetration rate
- Target year & region
- No. of target scenarios, ref year & region
- No. of target scenarios, target year & region

Accident statistics
- Target scenarios

Functional description
- Target scenarios

Technical Assessment
- Operational conditions
- Effectiveness
- False alarms (+/-)

User-related Assessment
- Usage
- Unintended behaviour

Effect on non-user

Exposure effects

Relation time – injury risk

Legend:
- Choice
- Step in other part of interactIve
- External data
- Step in safety impact assessment

(1,2) Potential effect in deployment scenario
(3) Effect incl. user tactical behaviour
(4,5) Effect non-user
(6,7,8) Effect exposure
(9) Mitigation

Safety effect in deployment scenario
Input data from technical and user-related Assessment

- Input from the technical assessment:
 - warning / intervention point in time
 - intervention strength (longitudinal lateral acceleration)
 - Overall 908 test runs considering 8 accident related test scenarios (e.g. rear-end, blind-spot or run-off road conflicts)

- Input from the user-related assessment
 - Intended usage of the functions for motorways, urban and extra urban road
 - Results base on the questionnaires during the interactlVe user studies.
 - Literature review on long term effects of ADAS
Use of accident database for the Impact Assessment

- GIDAS Database
 - Real Accidents are used in order to re-simulated real accidents with the interactIVe functions
 - Rear-end conflicts
 - Blind-spot conflicts
 - Run-off road conflicts
 - Accident for the re-simulation must fulfil certain requirements
 - Determine the change in the accident risk base

- CARE Database / National accident databases
 - Scaling up of the reconstruction results on European level
 - Identify potentially affected accidents for the interactIVe function, for which reconstruction was not possible (e.g. Speed related accidents, pedestrian accidents).
Direct effects – Accident re-simulation

- With system
- Without system

- Location
- Time

- Vehicle 1
- Vehicle 2

- $v_{0,OV}$
- $v_{0,HV}$
- $v_{1,OV}$
- $v_{1,HV}$
- $v_{3,OV}$
- $v_{3,HV}$

- $t_{\text{Function warns}}$
- $t_{\text{Function intervenes}}$
- $t_{\text{Driver reacts, with}}$
- $t_{\text{Driver reacts, without}}$
- $t_{\text{Accident, with}}$
- $t_{\text{Accident, without}}$

- Acceleration $a_{1,OV}$
- Acceleration $a_{1,HV}$
- $a_{1b,HV}$

- Collision

08-10-2013 | ITSC Den Haag 2013
Direct effects – Driver Reaction

- In order to consider the effect of a warning, driver reactions are defined.
- Basis for the driver reaction are the interactIVe user-related tests and a literature review:
 - Three different reactions were defined:
 - Rear-end: braking (90%) and evading (10%)
 - Run-off road and blind spot: steering (100%)
 - In order to consider different drivers, the relevant parameter (max. acceleration and reaction time) are varied.
 - For each case, 100 different driver reaction are generated.
Direct effects – Rear-end (collision mitigation)

- Speed $v_{0,HV}$ and $v_{0,OV}$ collision are known!
- Derive speed w_k from just after collision based billiard mechanics (correction factor c_k)
- Calculate $\Delta v_{HV} = w_k - v_{0,HV}$ and $\Delta v_{OV} = w_k - v_{0,OV}$, the change of speed at collision for the host and the other vehicle, with and without the system
- Use known relations between Δv in order to calculate injury risk…
Direct effects – Run-off road scenario

• In the run-off road scenario it is only checked, whether the accident is avoided or not
• No mitigation, because the depend on the location, which can not be considered due to missing data in the re-simulation with the system
Direct effects – Lane change scenario

• In principle same approach as for the run-off road scenario
• Only collision avoidance is analyse
• Time based avoidance is not considered by the re-simulation
• In contrast to the run-off road scenario the trajectory of the vehicle before the intervention needs to be changed:
 • A sinusoidal shape is presumed

\[y(x) = w_{\text{lane}} \left(\frac{x}{L} - \frac{1}{2\pi} \sin \left(\frac{2\pi x}{L} \right) \right), \text{ for } 0 \leq x \leq L \]
[SPO98]

• Length of the lane change \(L = v_0 T \) (deceleration due to steering manoeuvre is not considered)
• Distributions of the lane change time can be found in [SCH07, PFE07] for different vehicle types. From this one can draw the conclusion that
 • for passenger cars the mean lane change time is approximately 5 s, and in 95 \% of the cases is between approximately 3 s and 7 s.
 • for trucks the mean lane change time is approximately 7 s, and varies between 4 s and 11 s.
Indirect effect

- Different indirect effects are known (e.g. Distraction, Workload, Usage, Misues)
- Consideration of indirect effects in interactVe is difficult:
 - Most of the indirect effects are difficult to quantify
 - Based on the short term test in interactVe long-term effects could not be derived
- Only the usage of the function is considered
Example (Preliminary) Results

• Sample result for a rear-end collision avoidance system (warning & intervention):
 • 364 in-depth rear end accident scenarios analyzed
 • Avoided: 24.2 % (with driver reaction) / 22.4 % (without driver reaction)
 • Mitigated: 75 % (with driver reaction) / 76.8 % (without driver reaction)
 • 100% deployment in EU would save XX % fatalities and XX % injuries per year

• Sample result for a rear-end collision mitigation system (no warning):
 • 364 in-depth rear end accident scenarios analyzed
 • Avoided: 33.5 %
 • Mitigated: 42 %
 • 100% deployment in EU would save XX % fatalities and XX % injuries per year
Summary & Next steps

- Impact Assessment for the interactIVe function was conducted
- The effect of the interactIVe was analysis in detailed in three accident scenarios by the re-simulation of real accident scenario
- Results were scaled up to European Level by means of the CARE Database
- Analysed function showed a positive effects with respect to the European road safety

Final Event:
- 20-21 November 2013 in Aachen
- Joint event with eCoMove
- November 20: Presentations & Exhibition in Aachen
- November 21: Demo drives on Ford Proving Ground in Lommel
- Subscription is open at the interactIVe website: http://interactive-ip.eu
Direct effects – Collision Mitiation

- Speed $v_{0,i,\text{with}}$ and $v_{0,i}$ for vehicle i from just before collision are known!
- Derive speed $v_{-1,i,\text{with}}$ and $v_{-1,i}$ from just after collision based billiard mechanics
- Calculate $\Delta v_{i,\text{with}} = v_{1,i,\text{with}} - v_{0,i,\text{with}}$ and $\Delta v_i = v_{1,i} - v_{0,i}$, the change of speed at collision for the host and the other vehicle, with and without the system
- Use known relations between Δv and injury risk…
- … to determine change in risk R_i between with and without, for both vehicles

\[
(m_1 + m_2) \cdot \frac{w_{k,\text{OV}}}{c_k} \cdot (m_1 v_1 + m_2 v_2)
\]

Risk ratio R_i for vehicle i:

\[
R_i = \frac{\text{Risk}_{i,\text{with}}}{\text{Risk}_{i,\text{without}}}
\]
Project overview: Facts

• Budget: EUR 30 Million
• European Commission: EUR 17 Million
• Duration: 48 months (January 2010 – November 2013)
• Coordinator: Aria Etemad, Ford Research and Advanced Engineering Europe
• 10 Countries: Czech Republic, Finland, France, Germany, Greece, Italy, Spain, Sweden, The Netherlands, UK
Consortium

• OEMs

• Suppliers

• Research

• SMEs
Objectives

- More scenarios covered
- Sensor platform
- Decision strategies
- Active interventions
- Integration of functions

System intelligence
Low cost segment
Full collision avoidance | mitigation
interactIVe - Project overview

The interactIVe vision:
Accident-free traffic and active safety systems in all vehicles

• Facts:
 • Duration: 48 months (January 2010 – November 2013)
 • 29 partners of 10 countries
 • Budget: 30 Million € (Founding by the European Commission: 17 Million €)

• interactIVe systems:
 • SECONDS (Safety enhancement through continuous driver support)
 • INCA (Integrated collision avoidance and vehicle path control)
 • EMIC (Cost-efficient emergency intervention for collision mitigation)
Project structure

Sub-project 1: Integrated project (IP) management

Integrated advanced driver assistance systems (ADAS) for continuous support and emergency intervention

Sub-project 2: Perception
Specifications for sensor interfaces and fusion modules

Sub-project 3: Information, warning and intervention (IWI) strategies
Definition of use cases and requirements | Specifications for IWI strategies

Sub-project 4: SECONDS
Safety enhancement through continuous driver support

Sub-project 5: INCA
Integrated collision avoidance and vehicle path control

Sub-project 6: EMIC
Cost-efficient emergency intervention for collision mitigation

Seven demonstrator vehicles: six passenger cars and one truck

Sub-project 7: Evaluation and legal aspects
Test and evaluation framework for interactIVe applications | Analysis of legal aspects