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What is an intelligent vehicle ? 

 An Intelligent Vehicle is a vehicle designed to: 

 monitor a human driver and assist him in driving; 

 drive automatically. 

 Need of sensors to perceive the environment 
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Introduction 

• Goal  
• Vehicle perception in open 

 and dynamic environments 

• Laser scanner 

• Speed and robustness 

 

 

 

• Present Focus: interpretation of raw and noisy sensor data 

• Identify static and dynamic part of sensor data 

• Modeling static part of the environment 

• Simultaneous Localization And Mapping (SLAM) 

• Modeling dynamic parts of the environment 

• Detection And Tracking of Moving Objects (DATMO) 
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Problem statement 
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Outline 

Introduction 

- Part I - 

SLAM with 

Moving object detection 

- Part II - 

SLAM + DATMO 

- Part III - 

Conclusion & Perspectives 

- Part IV - Experimental results on real vehicles will  

illustrate SLAM+DATMO theoretical contributions 
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Map representation 

 

  

  

  

Point cloud map [Lu’97] Feature-based map [Leonard’91] 

Occupancy Grid(OG)-based map 

[Elfes’89] 

Environment representability + 

Model Size - 

Environment representability + 
Model Size + 

Environment representability - 
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SLAM 

Incremental mapping [Elfes’89,Thrun’00] 

inverse sensor model a priori map 

Maximum Likelihood Localization [Vu’07] 
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Example of Maximum Likelihood 

Localization [Vu’07] 

 

P(.) = 0.21 P(.) = 0.92 P(.) = 0.17 
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SLAM 

Incremental mapping [Elfes’89,Thrun’00] 

inverse sensor model a priori map 

Maximum Likelihood Localization [Vu’07] 
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Moving object Detection 

 Inconsistency between OG and observations allows deciding a 

measurement belonging to a static or dynamic object 

 Close points are grouped to form objects 

free occupied 
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Experiments 

• Daimler demonstrator (IP PReVENT) [Vu’07]  
• Laser scanner 

• Velocity, steering angle 

• High speed (>120km/h) 

• Camera for visual reference  

• Different scenarios: city streets,  

country roads, highways 

 

• Volkswagen demonstrator (STREP Intersafe2) [Baig’09] 
• Laser scanner 

• Odometry: rotational and  

translational speed 

• Camera for visual reference 

• Urban traffics 
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Results: SLAM + moving objects detection 

Execution time:  ~20ms on a PIV 3.0GHz PC 2Gb RAM 

Daimler demonstrator 
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DATMO 

Introduction 
SLAM with 

Moving object detection 
SLAM + DATMO 

Conclusion & Perspectives 
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DATMO ï known problems using laserscanner 

• Objects are represented by groups of points  

• Tracking groups of points leads to a degradation of 

tracking results 

• Object splitting (occlusions, glass-surfaces) makes 

the tracking harder 

 => Using object models to overcome these problems 
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DATMO: our approach 

 

  

  

  

Å Considering data sequence over a 

sliding window of time 

Å Maximizing a posterior probability 

Å Interpretation of moving objects and 

their trajectories from a laser 

sequence 

=> Simultaneous Detection, Classification and Tracking of Moving Objects  

is a trajectory of object models  
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Representation and exploration of space of 

moving objects hypothesis 

• Define object model 

• Box model to represent cars, trucks or bus and motorcycle 

• Point model to represent pedestrian 

• Incremental build of the graph of hypothesis 

 

 

 

 

 

 

 

 

 

 

• Exploration of the graph 

• Use of sampling techniques (MCMC) 

 

  

Moving object hypothesis generated  

over a sliding window of time 

Incremental graph of hypothesis 

t-2 

t-1 

t 
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Evaluation of a hypothesis knowing 

observations 

 MAP estimate: 
 

 

 

         Prior model:                               Likelihood model: 
=> Add some apriori   => Evaluate likelihood of 

constraints on individual objects       observations knowing hypothesis 

      

temporal motion  

consistency 

Reward Penalyze 
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Experiments 

• Navlab Dataset (CMU) [Vu’09] 
• SICK laser scanner: resolution: 0.50,  

range: 50m, FOV: 1800, freq: 37.5Hz 

• Odometry: rotational and  

translational speed 

• Camera for visual reference 

• Real-life urban traffics 
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Results: SLAM + DATMO 

 Execution time:  ~120ms on a PIV 3.0GHz PC 2Gb RAM 



19 

Conclusion & perspectives 

Introduction 
SLAM with 

Moving object detection 
SLAM + DATMO 

Conclusion & Perspectives 

- Part IV - 



20 

Conclusion 

• Modeling static part of the environment 
• 2D OG to model open environment 

• Particle filter to perform localization 

• Moving object detection 

 

 

• Modeling dynamic part of the environment 
• Simultaneous detection, classification and tracking moving objects 

• Using object models overcomes existing problems of laser-

based tracking 

• Data-driven MCMC helps to search for the optimum solution in 

the spatio-temporal space in real-time 
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Perspectives 

• CRF/TRW demonstrator car (European 

InteractIVe project) [Chavez’12] 

• Data available: 2D laser, radar, 

camera 

• Generic perception platform for 

active safety 

camera 

radar laser 

• Sensor data fusion based on Occupancy Grid and Evidential theory to 
improve detection performance [Chavezô12] 

 

 

 

 

 

 

 

 

 

 

• Vision based classification 
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