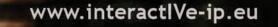


Accident avoidance by active intervention for Intelligent Vehicles



InteractIVe Summer School, July 6th, 2012 Grid based SLAM & DATMO

Olivier Aycard University of Grenoble 1 (UJF), FRANCE http://membres-liglab.imag.fr/aycard/ aycard@imag.fr

What is an intelligent vehicle ?

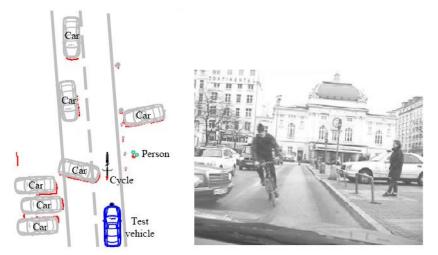
- An Intelligent Vehicle is a vehicle designed to:
 - monitor a human driver and assist him in driving;
 - drive automatically.
- Need of sensors to perceive the environment



Introduction

Goal

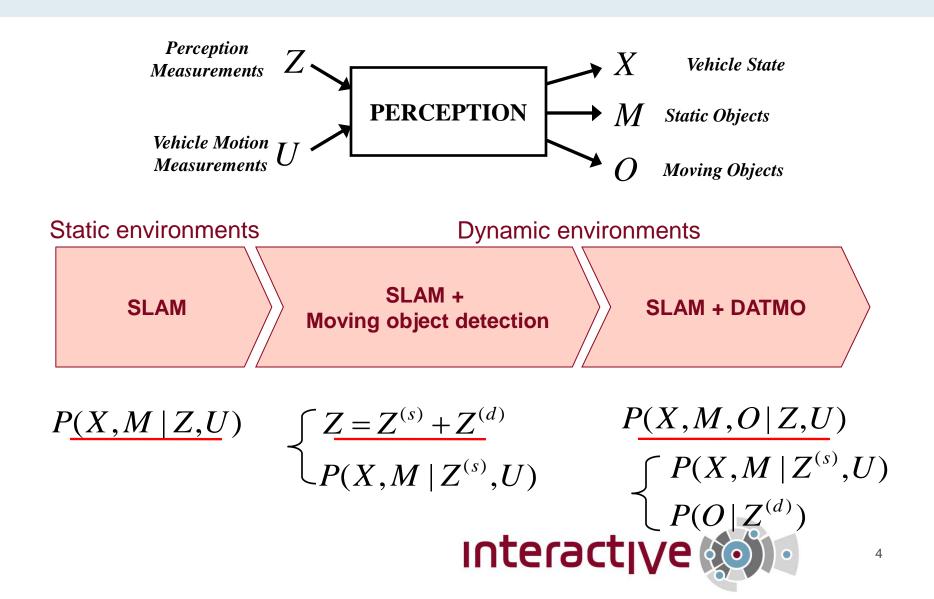
- Vehicle perception in open and dynamic environments
- Laser scanner
- Speed and robustness

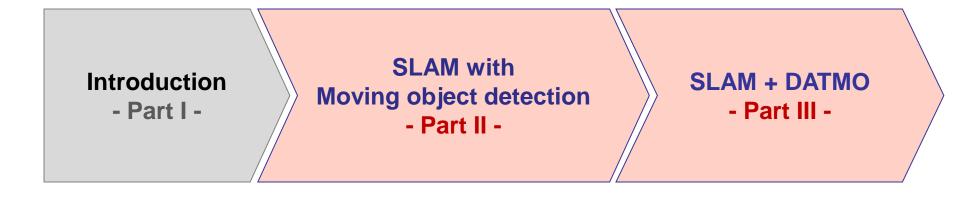


Present Focus: interpretation of raw and noisy sensor data

- Identify static and dynamic part of sensor data
- Modeling static part of the environment
 - Simultaneous Localization And Mapping (SLAM)
- Modeling dynamic parts of the environment
 - Detection And Tracking of Moving Objects (DATMO)

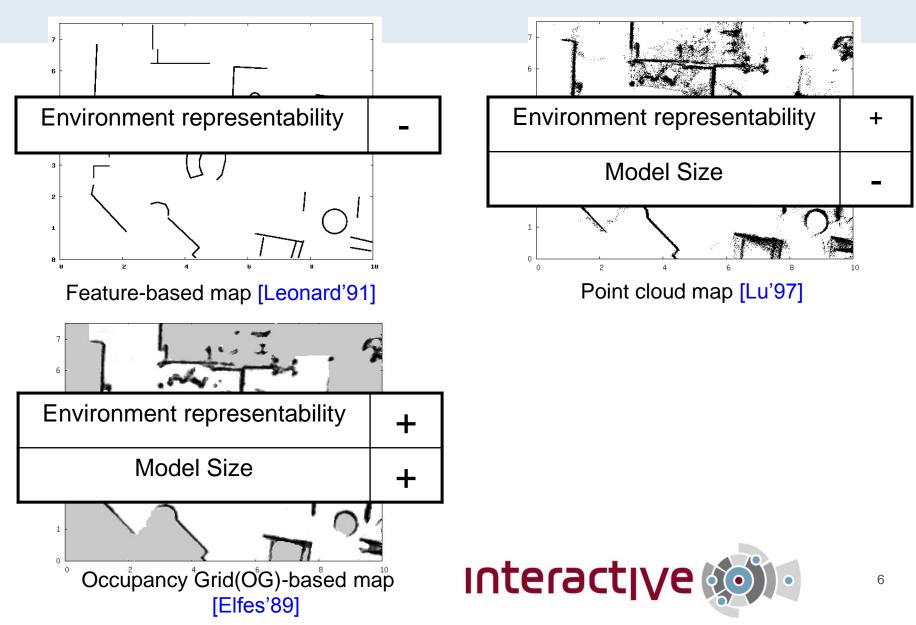
Problem statement





Experimental results on real vehicles will illustrate SLAM+DATMO theoretical contributions

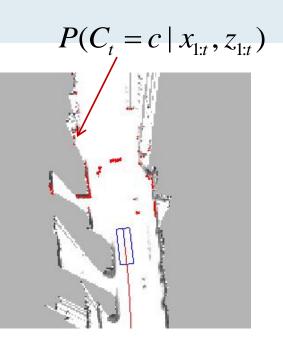
Map representation



SLAM

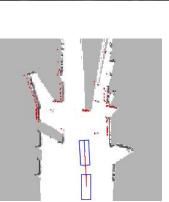
Incremental mapping [Elfes'89,Thrun'00] $\log O(C_t = c \mid x_{1:t}, z_{1:t}) = \log O(C_{t-1} = c \mid x_{1:t-1}, z_{1:t-1}) + \log O(C_t = c \mid x_t, z_t) - \log O(C_0 = c)$ inverse sensor model a priori map where $O(a \mid b) = odds(a \mid b) = P(a \mid b) / (1 - P(a \mid b))$

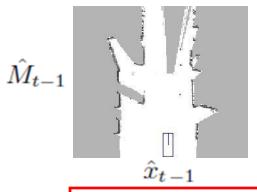
Maximum Likelihood Localization [Vu'07]

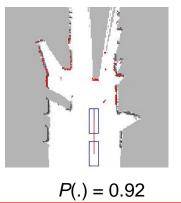


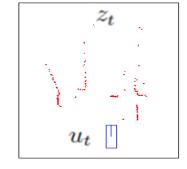
Example of Maximum Likelihood Localization [Vu'07]

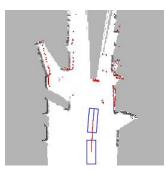
$$\begin{cases} \hat{x}_{t} = \operatorname*{argmax}_{x_{t}} \{ P(z_{t}|x_{t}, \hat{M}_{t-1}) P(x_{t}|u_{t}, \hat{x}_{t-1}) \} \\ \hat{M}_{t} = \hat{M}_{t-1} \cup \{ \langle \hat{x}_{t}, z_{t} \rangle \} \end{cases}$$











SLAM

 $P(C_{t} = c \mid x_{1:t}, z_{1:t})$ Incremental mapping [Elfes'89, Thrun'00] $\log O(C_t = c \mid x_{1:t}, z_{1:t}) = \log O(C_{t-1} = c \mid x_{1:t-1}, z_{1:t-1})$ $+ \log O(C_t = c | x_t, z_t) - \log O(C_0 = c)$ inverse sensor model a priori map where O(a | b) = odds(a | b) = P(a | b) / (1 - P(a | b))Maximum Likelihood Localization [Vu'07] $\begin{cases} \hat{x}_{t} = \underset{x_{t}}{\operatorname{argmax}} \{ P(z_{t}|x_{t}, \hat{M}_{t-1}) P(x_{t}|u_{t}, \hat{x}_{t-1}) \} \\ \hat{M}_{t} = \hat{M}_{t-1} \cup \{ \langle \hat{x}_{t}, z_{t} \rangle \} \end{cases}$ occupied free

Moving object Detection

- Inconsistency between OG and observations allows deciding a measurement belonging to a static or dynamic object
- Close points are grouped to form objects

Experiments

Daimler demonstrator (IP PReVENT) [Vu'07]

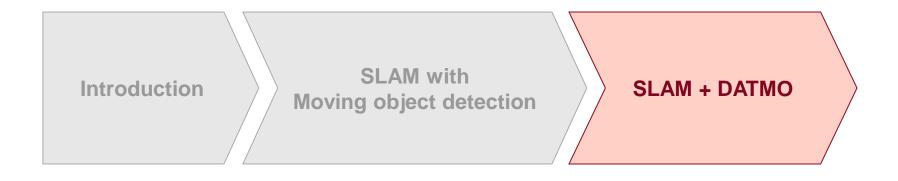
- Laser scanner
- Velocity, steering angle
- High speed (>120km/h)
- Camera for visual reference
- Different scenarios: city streets, country roads, highways

Volkswagen demonstrator (STREP Intersafe2) [Baig'09]

- Laser scanner
- Odometry: rotational and translational speed
- Camera for visual reference
- Urban traffics

Results: SLAM + moving objects detection

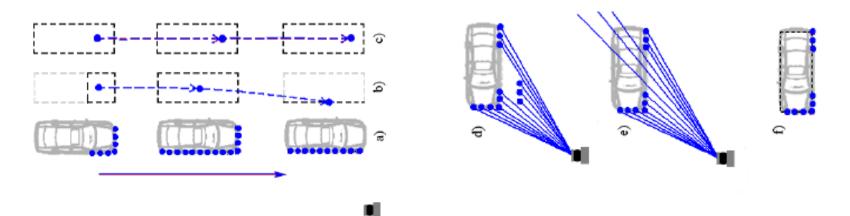
Execution time: ~20ms on a PIV 3.0GHz PC 2Gb RAM Daimler demonstrator



Conclusion & Perspectives

DATMO – known problems using laserscanner

- Objects are represented by groups of points
- Tracking groups of points leads to a degradation of tracking results
- Object splitting (occlusions, glass-surfaces) makes the tracking harder



=> Using object models to overcome these problems

DATMO: our approach

- Interpretation of moving objects and their trajectories from a laser sequence
- Considering data sequence over a sliding window of time

 $Z = \{Z_1, ..., Z_T\}$

• Maximizing a posterior probability

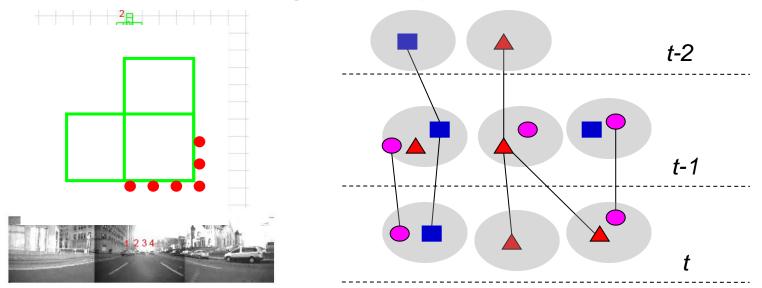
 $\boldsymbol{\omega}^* = \operatorname*{argmax}_{\boldsymbol{\omega}} P(\boldsymbol{\omega}|Z)$ $\boldsymbol{\omega} = \{\tau_1, \tau_2, ..., \tau_K\}$

 au_k is a trajectory of object models

=> Simultaneous Detection, Classification and Tracking of Moving Objects

Representation and exploration of space of moving objects hypothesis

- Define object model
 - Box model to represent cars, trucks or bus and motorcycle
 - Point model to represent pedestrian
- Incremental build of the graph of hypothesis



Moving object hypothesis generated over a sliding window of time

- Exploration of the graph
 - interactive 🐼 Use of sampling techniques (MCMC)

Incremental graph of hypothesis

Evaluation of a hypothesis knowing observations

MAP estimate:

$$\boldsymbol{\omega}^* = \operatorname*{argmax}_{\boldsymbol{\omega}} P(\boldsymbol{\omega}|Z)$$

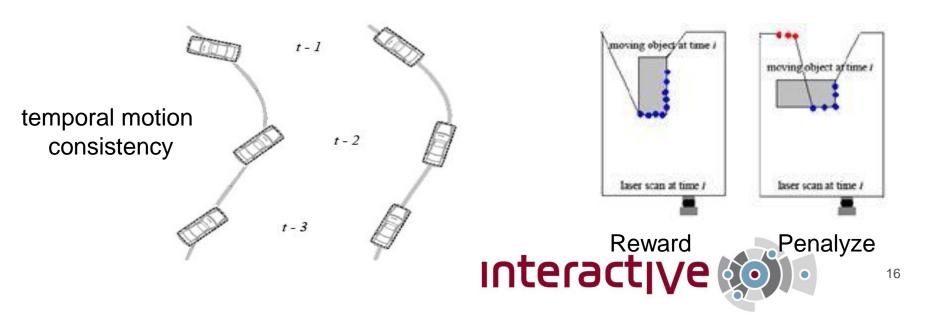
$$P(\boldsymbol{\omega}|Z) \propto P(\boldsymbol{\omega})P(Z|\boldsymbol{\omega})$$

Prior modek

=> Add some *apriori* constraints on individual objects

Likelihood model:

=> Evaluate likelihood of observations knowing hypothesis



Experiments

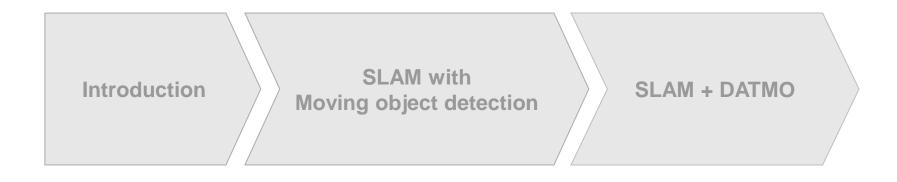
- Navlab Dataset (CMU) [Vu'09]
 - SICK laser scanner: resolution: 0.5⁰, range: 50m, FOV: 180⁰, freq: 37.5Hz
 - Odometry: rotational and translational speed
 - Camera for visual reference
 - Real-life urban traffics

Results: SLAM + DATMO

Execution time: ~120ms on a PIV 3.0GHz PC 2Gb RAM
Interactive (

•

Conclusion & perspectives



Conclusion & Perspectives - Part IV -

Conclusion

Modeling static part of the environment

- 2D OG to model open environment
- Particle filter to perform localization
- Moving object detection

[Vu'07] T.D. Vu, O. Aycard and N. Appenrodt. Online Localization and Mapping with Moving Object Tracking in Dynamic Outdoor Environments. In IEEE International Conference on Intelligent Vehicles (IV). 2007.

Modeling dynamic part of the environment

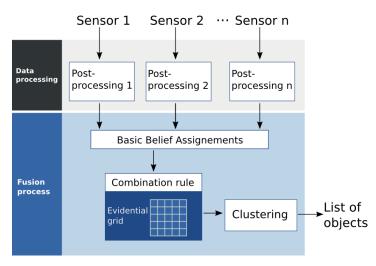
- Simultaneous detection, **classification** and tracking moving objects
 - Using object models overcomes existing problems of laserbased tracking
 - Data-driven MCMC helps to search for the optimum solution in the spatio-temporal space in real-time

[Vu'09] T.D. Vu, O. Aycard. Laser-based Detection and Tracking Moving Objects using Data-Driven Markov Chain Monte Carlo. In IEEE International Conference on Robotics and Automation (ICRA), 2009.

Perspectives

- CRF/TRW demonstrator car (European InteractIVe project) [Chavez'12]
 - Data available: 2D laser, radar, camera
 - Generic perception platform for active safety

 Sensor data fusion based on Occupancy Grid and Evidential theory to improve detection performance [Chavez'12]



Vision based classification



Accident avoidance by active intervention for Intelligent Vehicles

www.interactive-ip:eu

Thank you.

Co-funded and supported by the European Commission

Olivier Aycard University of Grenoble1 (UJF), FRANCE http://membres-liglab.imag.fr/aycard/ aycard@imag.fr

SEVENTH FRAMEWORK PROGRAMME